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10 Abstract

11 Solvent injection, a well-established method for enhanced oil recovery (EOR), has demonstrated 
12 significant improvements in oil recovery when compared with conventional water flooding 
13 techniques. The interfacial tension (IFT) is pivotal in determining the displacement efficiency 
14 and overall performance of innovative techniques like dimethyl ether-enhanced waterflooding 
15 (DEW), which has gained substantial attention in recent years. In this study, following laboratory 
16 measurements of IFT, six advanced machine learning (ML) techniques were employed: 
17 Generalized Linear Model (GLM), Gradient Additive Model (GAM), Random Forest (RF), 
18 Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), and Boosted 
19 Regression Tree (BRT) to model the IFT in both oil-brine and oil-brine-diethyl ether (DEE) 
20 systems. The analysis is based on an extensive dataset comprising 7,017 data points for oil-brine 
21 and 6,949 data points for oil-brine-DEE systems obtained from experimental studies. The 
22 findings indicate that the developed RF model excels in predicting IFT, boasting a remarkable 
23 coefficient of determination (R2 = 0.99) along with the lowest root mean squared error (RMSE = 
24 0.2), mean squared error (MSE = 0.04), and mean absolute error (MAE = 0.13). The study 
25 underscores the significance of optimizing salinity levels to achieve the most substantial 
26 reduction in IFT. This reduction is attributed to the enhanced migration of polar components, 
27 such as asphaltene molecules, to the interface of the oil-brine system. Moreover, the research 
28 highlights a synergistic decrease in IFT when both DEE and soluble ions are present, resulting in 
29 the lowest IFT at around 2 mN/m in 40,000 ppm salinity (S2) at 70°C (T3). This indicates that the 
30 adsorption of DEE at the water–oil interface forms a layer capable of adsorbing ions, thereby 
31 enhancing the layer's thickness. As a result, the oil–solvent-ion layer becomes thicker compared 
32 to the oil-ion layer, leading to the maximum decrease in IFT. Additionally, with increasing 
33 temperature up to 70°C, the IFT of both systems demonstrated a downward trend, as evidenced 
34 by all experiments. The outcomes of this study have the potential to enhance our comprehension 
35 of the underlying mechanisms involved in water-soluble solvent EOR techniques.

36
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40 1. Introduction

41 The increasing global energy demand has intensified the focus on Enhanced Oil Recovery (EOR) 
42 [1–4]. According to the Organization of Petroleum Exporting Countries (OPEC), projections 
43 indicate that by 2040, the demand for oil is expected to reach approximately 11.1 million barrels 
44 per day. This represents a 23.1 % increase compared to the current value [5]. Therefore, low-cost 
45 EOR methods are highly favorable as a result [6–9]. A wide range of EOR techniques proposed 
46 and developed, including thermal, chemical, and gas injection methods; different techniques had 
47 certain set of advantages and disadvantages [10,11]. Multiple studies propose utilizing ether as a 
48 cost-effective, non-hydrocarbon solvent for recovering crude oil. Shell initially introduced this 
49 method based on the favorable combination of ether properties, water, and oil, establishing it as a 
50 highly effective solvent for oil recovery [12–15]. The capacity to dissolve in both brine and oil 
51 offers an economic benefit [16,17]. During ether-enhanced water flooding, the transfer of ether 
52 mass into the oleic phase leads to the mobilization of residual oils through mechanisms such as 
53 swelling, viscosity reduction, and a decrease in interfacial tension (IFT), ultimately resulting in 
54 substantial oil recovery [18–20]. According to the previous research, ethers exhibit higher 
55 solubility in the aqueous phase when compared to CO2. Particularly, Dimethyl ether (DME) has 
56 been observed to increase oil swelling up to four times more than CO2 [21]. The extent of oil 
57 swelling and viscosity reduction due to DME mass transfer from the water to the oil phase, 
58 known as the partition coefficient, plays a crucial role in ether-enhanced water flooding. This 
59 process enhances oil mobility and decreases residual oil saturation [22–24]. Additionally, DME 
60 and CO2 possess global warming potentials of 0.1 and 1.0, respectively, when considered over a 
61 500-year timeframe. This suggests that DME could be deemed environmentally friendly [25]. 
62 Consequently, due to their relatively minor negative environmental effects compared to many 
63 other EOR methods, ethers emerge as a promising solution to address sustainability challenges in 
64 the oil industry [26–28]. In detail, DME represents the simplest form of ether. Under standard 
65 atmospheric conditions, DME typically exists in the gaseous state. In contrast, Diethyl ether 
66 (DEE), with the chemical formula (C₂H₅)₂O, remains in a liquid state at room temperature, 
67 characterized by a relatively low melting point of -116.3°C [29]. The low melting and boiling 
68 points make DEE easily manipulable in laboratory settings and contribute to its widespread use 
69 as a solvent [30]. Due to the reasons mentioned above, working with DEE under laboratory 
70 conditions is feasible. It is anticipated that the methods used to recover oil with DME and DEE 
71 share similar production mechanisms. As a result, it is practical to conduct a single study and 
72 utilize experimental data from DEE tests and apply it for DME. Given the substantial potential to 
73 improve oil recovery through mechanisms like IFT reduction, it is beneficial to gain insights into 
74 the interfacial behavior of ether in the oil-brine system.

75 Generally, IFT plays a vital role in all EOR processes. The IFT is significantly influenced by the 
76 composition of the two phases, as well as the pressure and temperature conditions. Experimental 
77 techniques, including pendent and spinning drop methods, are commonly employed to measure 
78 this property, but they can be both costly and time-intensive, and in certain situations, they may 
79 pose significant challenges. Consequently, the consideration of an alternative approach, such as 



3

80 calculating IFT through modeling, becomes crucial [31]. Artificial intelligence (AI) techniques 
81 have found application in the petroleum industry for diverse purposes[32–36], offering an 
82 alternative solution for tasks such as estimating IFT. AI, functioning as an intuitive mechanism, 
83 encompasses various capabilities, including observation, learning, and reasoning [37]. As an 
84 interdisciplinary science, AI employs multiple approaches, with notable successful applications 
85 in areas such as "classification," "forecasting," "control systems," and "optimization and 
86 decision-making"[38]. Machine learning (ML), a subset of AI and computer science, centers on 
87 utilizing data and algorithms to emulate human learning processes, gradually enhancing its 
88 accuracy over time. ML is specifically concerned with the development of computer programs 
89 capable of adapting when exposed to new data [39,40]. As a result, the utilization of a ML 
90 approach emerges as an intelligent strategy for modeling IFT using straightforward inputs from 
91 experimental data, including temperature, salinity, and other crucial parameters. With these 
92 inputs, a robust ML model has the potential to provide accurate and timely predictions.

93 It's important to highlight that, given the prevalence of oil and water as the dominant fluids in 
94 reservoirs, the majority of ML models have been designed to predict IFT in various systems, 
95 including oil-brine [41,42], water-hydrocarbon [43], brine-hydrocarbon [44,45], and CO2-brine 
96 [46–48]. For example, In Barati Harooni et al.'s (2016) study, they utilized the combination of 
97 Least Square Support Vector Machine (LS-SVM) and Coupled Simulated Annealing (CSA) to 
98 model oil-brine IFT. The results revealed that their developed model accurately predicts 
99 experimental IFT data [49]. In 2019, Menad Nait Amar et al. presented the Gradient Boosting 

100 Decision Tree (GBDT) model as superior in predicting IFT for oil-brine systems, achieving an 
101 R-squared value of 0.9977 across all data, surpassing the AdaBoost SVR method. Their research 
102 contributed to the field by developing and statistically validating two ML models, with the 
103 GBDT model showing high accuracy and utility for estimating IFT [45]. In 2020, Alexsandro 
104 Kirch et al. showcased the effectiveness of ML, particularly the gradient boosted algorithm, in 
105 forecasting oil-brine IFT with an R-squared score of 0.97, surpassing the less precise linear 
106 regression approach [50]. In the 2024 study by Yousefmarzi et al., six ML algorithms were 
107 employed to predict IFT between gas-water and oil-water systems. These algorithms included 
108 Support Vector Regression (SVR), Random Forests (RF), Decision Tree (DT), Gradient 
109 Boosting (GB), Catboosting (CB), and XGBoosting (XGB). The study revealed that SVR and 
110 CB outperformed other algorithms in terms of accuracy and robustness [51]. However, to the 
111 best of our knowledge, no investigation has been conducted on modeling the IFT of oil-brine-
112 DEE systems using ML methods. Despite the past decade witnessing limited research dedicated 
113 to investigating the use of ethers as an EOR agent, their potential merits further exploration.

114 In this regard, some experimental studies have examined that molecular diffusion and partition 
115 coefficient of DME play a significant role in oil recovery during DME solvent injection in 
116 comparison with relative permeability and capillary pressure [52]. However, the oil recovery rate 
117 attributed to DME molecular diffusion is notably slower than that driven by capillary forces. 
118 Khalifi et al. (2019) conducted a study on the DME diffusion coefficient in Athabasca bitumen, 
119 examining pressures ranging from 0.689 to 2.757 MPa and temperatures from 50°C to 110°C. 
120 The research findings revealed variations in DME molecular diffusion within bitumen, ranging 
121 between 0.2–2 and 10–9 m²/s [53]. The investigation conducted by Fayazi and Kantzas (2019) 
122 employed magnetic resonance imaging (MRI) to determine the diffusion coefficients of various 
123 solvents, including DME, propane, ethane, and CO2, within heavy oil. The findings revealed a 
124 notable swelling effect of DME on heavy oil in comparison to the other solvents, with a density 
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125 of 0.9887 g/cm3 at 15.56°C. Specifically, DME exhibited dynamic and equilibrium swelling 
126 factors of 18.4 % and 37.7 %, respectively, under a pressure of 0.55 MPa [54].

127 Additional research has been devoted to assessing the EOR capabilities of DME for enhanced 
128 waterflooding. This innovative chemical EOR technology has gained prominence across various 
129 reservoirs, representing a distinct approach capable of enhancing oil recovery in reservoirs 
130 characterized by both sandstone and carbonate formations with low permeability. Notably, 
131 successful implementation of DME injection has been demonstrated in the Hatter's Pond field in 
132 Alabama [55]. Parsons et al. explored DEW core flood experiments in the presence of live oil (25 
133 cp) within Berea sandstone. Their study involved the injection of 3.2 pore volumes (PV) of 
134 freshwater, succeeded by 1 PV of DME slug (10 % DME in water). This injection sequence led 
135 to a notable surge in incremental oil recovery, reaching 25 % beyond the 45 % achieved through 
136 the conventional waterflooding [20].

137 The results of a study assessing the effectiveness of injecting DME into a fractured chalk 
138 reservoir were noteworthy [56]. Core-flooding experiments with DME-brine showed a significant 
139 44.2% increase in oil recovery. This increase can be attributed to the migration of DME from the 
140 DME-brine solution into the oil phase, resulting in an increase in the density of the DME-brine 
141 solution and a decrease in the density of the oil phase. These changes are anticipated to improve 
142 the vertical sweep efficiency of the oil by the DME-brine solution. Further investigations by 
143 Javanmard et al. explored DME-brine injection (at 3 and 6 PV) into tight chalk core samples, 
144 revealing an additional oil recovery of 31.4 % compared to conventional waterflooding. Notably, 
145 in chalk reservoirs, DME injection exhibited distinct advantages over CO2 flooding, as it did not 
146 lead to precipitation or mineral dissolution. The observed increase in differential pressure was 
147 attributed to the significant swelling of oil in the presence of DME-brine solution [57].

148 Recently, there have been numerical simulation investigations into the injection of DME. The 
149 solubility and partition coefficient of DME in the DME-brine-oil system are influenced by the 
150 interactions among its various components. To comprehensively capture these interactions and 
151 model the equation of state (EOS) with flow behavior, it is imperative to integrate numerical 
152 simulations with experimental studies [58]. In the context of the DEW model, a compositional 
153 simulation-based numerical analysis was developed to examine the phase behavior performance 
154 and clarify the transport mechanism, utilizing the GEM compositional simulator from the 
155 Computer Modeling Group (CMG). Notably, the IFT between DME and reservoir oil was found 
156 to be very small, while that between CO2 and reservoir oil was approximately 5 dyne/cm. 
157 Consequently, DME exhibited a more pronounced reduction in oil viscosity compared to CO2 
158 flooding. The study revealed that DEW application led to a 34 % and 12 % improvement in oil 
159 recovery compared to conventional waterflooding and CO2 flooding, respectively [59]. 
160 Chernetsky et al. developed a dynamic model to conduct history matching, interpretation, and 
161 sensitivity analyses at various stages of core-flooding experiments. The DME solubility and 
162 partition coefficient data were fine-tuned using the cubic-plus-association (CPA) EOS model, 
163 which combines the Soave-Redlich-Kwong (SRK) equation of state with the association term 
164 from the Wertheim theory. Through both experiments and simulations focused on oil recovery 
165 during core floods, they observed a high level of harmony between the experimental findings and 
166 the simulated models. Following the injection of DME/brine, noteworthy alterations in the 
167 wettability of carbonate cores were observed, shifting towards a more water-wet condition [60]. 
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168 Their research findings highlighted a significant knowledge gap pertaining to the impact of DEE 
169 on the IFT within the oil-brine system.

170 While interest in utilizing ethers for EOR is increasing, the existing literature predominantly 
171 examines DME solubility in aqueous and oleic phases across various salinity, pressure, and 
172 temperature conditions, crucial for oil recovery. Some studies have also investigated DME 
173 diffusion coefficients in crude oil, given their significant impact on oil recovery during solvent 
174 injection. Several researchers have evaluated DME's EOR effectiveness in enhanced 
175 waterflooding, with some conducting pilot tests of this method. However, there remains a 
176 notable gap in our understanding of how ethers, particularly DEE, affect IFT in oil-water 
177 systems, as the effect of DEE on IFT has not been examined. Additionally, our research and 
178 comprehensive literature review have revealed the absence of a dedicated AI model for 
179 predicting the IFT relationship between oil and brine in the presence of DEE. To bridge this gap, 
180 our study aims to introduce six advanced ML models: the Generalized Linear Model (GLM), 
181 Gradient Additive Model (GAM), Support Vector Machine (SVM), Random Forest (RF), 
182 Extreme Gradient Boosting (XGBoost), and Boosted Regression Tree (BRT). The selected 
183 models strike a balance between linear and nonlinear interpretations. Additionally, their 
184 successful application in related fields provides a strong foundation for predicting IFT values in 
185 the oil-brine-diethyl ether system.

186 In this study, Firstly, the data were generated by measuring the IFT of oil-brine-DEE across 
187 various salinities and temperatures, while maintaining constant pressure conditions (2000 psi) 
188 using the pendant drop method. Secondly, the experimental data underwent modeling utilizing 
189 the six aforementioned ML models. Thirdly, the proposed models' validity was evaluated, 
190 followed by a rigorous statistical analysis to determine the optimal model. This research 
191 endeavor seeks to contribute valuable insights to the field of water-based EOR projects by 
192 addressing a crucial knowledge gap regarding the influence of ethers on IFT dynamics in oil-
193 water systems.

194

195 2. Methodology

196 2.1 Workflow

197 Fig. 1 illustrates the full set of steps utilized in this study, consisting of six primary steps. In 
198 Steps 1 and 2, initially, the 40,000 ppm solution (S2) was prepared. To assess the influence of 
199 salinity on the IFT, two additional solutions with salinities of 4000 ppm (S1) and 80,000 ppm 
200 (S3) were also prepared. Subsequently, the study examined the effects of varying temperatures of 
201 30ºC (T1), 50ºC (T2), and 70ºC (T3) on the IFT of the oil-brine system, serving as the base case. 
202 Then, DEE with maximum solubility was introduced into the aqueous phase across all solutions. 
203 The IFT was then measured under consistent experimental conditions, and a comparative 
204 analysis was conducted between the two sets of experiments. This was done to elucidate the 
205 impact of DEE on the IFT of the oil-brine system. Moving on to Step 3, A dataset comprising 
206 7017 entries for the oil-brine system and 6949 entries for the oil-brine-DEE system was 
207 assembled to develop the ML models. The entire dataset was divided into two distinct sets: the 
208 training set and the testing set. For this study, 70 % of the data points were randomly selected 
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209 and employed in constructing the prediction models. The remaining 30 % of the experiment 
210 samples represented the testing phase of the ML paradigms. Step 4 includes selecting advanced 
211 ML algorithms specifically tailored to model the IFT. The research then proceeds to Step 5, 
212 where the selected ML models are trained on the prepared data, and their performance is 
213 rigorously evaluated using statistical indices. Finally, Step 6 selects the best model based on their 
214 performance in modeling the IFT of oil-brine in the presence of DEE. 

215

216 Fig. 1.  The series of steps for this research

217 2.2 Brine and crude oil
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218 In the present study, an S2 solution was prepared, and its analysis is detailed in Table 1. 
219 Additionally, S1 and S3 solutions were prepared separately with distilled water to investigate the 
220 impact of salinity on the IFT of oil-brine-DEE. The oil utilized in this research originates from 
221 the Bangestan reservoir in Iran, characterized by carbonate rock formations, specifically 
222 limestone varieties. The characteristics of the oil utilized in this study are detailed in Table 2.

223

224 Table 1. Composition of various brines (in ppm) utilized in this research

Ion 4000 ppm (S1) 40,000 ppm (S2) 80,000 ppm (S3)

Na+ 1724 17243 34486

Cl- 1981 19807 39614

K+ 40 400 800

HCO3- 5 50 100

Mg2+ 214 2143 4286

Ca2+ 46 460 920

SO4
2- 150 1497 2994

TDS 4162 41659 83318

Ionic strength, mol/L 0.083 0.832 1.664

225

226 Table 2. Physical characteristics of the dead oil employed in this research

Properties value

ºAPI 29
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Viscosity (at 30ºC), centipoise 11

Asphaltene (wt. %) 2.5

Density (at 30ºC), gr/cm3 0.885

227

228 2.3 DEE-brine solutions

229 The study utilized high-purity DEE (≥99 %) obtained from Merck Company, and we determined 
230 the maximum solubility of DEE in brine (6 % wt). Literature indicates that DEE's solubility in 
231 deionized water at 25°C and ambient pressure is 60.5 g/mL [61]. To guarantee maximal 
232 dissolution of DEE in brine, 20cc of seawater was introduced into a test tube, and DEE was 
233 gradually introduced with continuous stirring on a magnetic stirrer for approximately 1 hour. 
234 Upon complete mixing, the solution underwent inspection for single-phase consistency. It is 
235 important to mention that throughout the experimentation, the test tube remained tightly sealed to 
236 prevent DEE evaporation.

237

238 2.4 IFT measurement

239 The IFT measurement between oil and various solutions was conducted using the pendant drop 
240 method, which entails deducing the IFT by analyzing the shape profile of a droplet of one liquid 
241 suspended within another at mechanical equilibrium. The high-pressure/high-temperature IFT 
242 apparatus is equipped with two pumps, a 300cc chamber with glass windows, a sealed metal 
243 needle connected to the hydrocarbon pump at the chamber's bottom, a heating jacket with ±1°C 
244 accuracy, a pressure gauge with ±10 psi accuracy, a light projection system, a camera, and a 
245 computer featuring image processing software. This software is employed for measuring IFT 
246 values under both static and dynamic conditions, as depicted in Fig. 2. In this procedure designed 
247 to evaluate the IFT between two liquids, the process involves introducing the solution into the 
248 chamber using a pump. Subsequently, an oil droplet is suspended from the needle within the 
249 solution. The pump is utilized to control the oil droplet, while a digital camera captures images 
250 of the oil droplets at various time intervals. The software, based on Eq. (1), calculates the IFT 
251 between the oil droplets and the aqueous solution. The IFT measurements are conducted at three 
252 distinct temperatures, specifically T1, T2, and T3, which are maintained and regulated by a 
253 temperature controller.

𝛾 =
∆𝜌𝑔𝐷2

𝐻
(1)
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254 where, "𝛾" represents the IFT (mN/m), "𝑔" corresponds to the force of gravity, "𝐷" denotes the 
255 equatorial diameter of the drop (cm), "𝛥𝜌" stands for the density disparity between two 
256 immiscible liquids (g/cm³), and "𝐻" signifies the coefficient determining the drop's shape [62].

257

258 Fig. 2. Apparatus and schematic of the high-pressure/high-temperature IFT utilized in this study

259
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260 2.5 Machine learning model developments

261 In this section, we expound on the theoretical principles underlying six advanced ML algorithms 
262 and provide statistical metrics for assessing their relative performance. The subsequent segment 
263 specifies the theoretical foundations and essential functionalities of the GLM, GAM, RF, SVM, 
264 XGBoost, and BRT models utilized in the study. All data analysis, running the models and 
265 visualization were conducted in R software.

266  

267 2.5.1 Generalized Linear Model (GLM) 

268 In this study, the GLM was utilized to model the IFT of two systems: oil-brine and oil-brine-DEE 
269 under laboratory conditions. The GLM methodology was implemented using the MASS package 
270 within the R 4.2.2 software environment. Serving as an extension of conventional linear regression, 
271 GLM proves versatile in handling both linear and non-linear datasets for regression analysis. 
272 Despite its inherent simplicity, GLM has found widespread application in predicting and has 
273 exhibited commendable performance relative to other modeling methods. GLM leverages 
274 multivariate regression to express conditional factors as functions of the presence or absence of 
275 predictand-related factors. Notably, one of the key advantages of GLM, compared to traditional 
276 linear regression models, is its independence from the assumption of normal distribution for 
277 observed data, contributing to its applicability in diverse contexts. More information about this 
278 model can be found at [63]. 

279

280 2.5.2 Gradient Additive Model (GAM)

281 GAM, often referred to as "wiggly models" [64], was pioneered by previous research [65] as an 
282 amalgamation of GLM and additive models. In GAM, the linear association between the dependent 
283 and independent variables is substituted with non-linear smooths. GAM adopts an additive 
284 approach where the appropriate functional form is chosen based on the data without prior 
285 knowledge of the model's functional aspects [66]. Initially designed to combine the advantages of 
286 GLMs and additive models within a single framework [67], GAMs serve as nonparametric 
287 extensions of GLMs. Their primary advantage over the latter lies in the ability to model complex 
288 and non-linear relationships. The response variable (Y) in GAMs is not confined to following a 
289 normal distribution; instead, it can be fitted by various distributions such as Poisson or binomial 
290 distributions.

291

292 2.5.3 Support Vector Machine (SVM)

293 The SVM, a member of the Generalized Linear Classifier family and founded on the Vapnik-
294 Chervonenkis Dimension theory, was initially devised by Vladimir N. Vapnik in 1963 for linear 
295 models [68]. It was later expanded to handle non-linear training data in 1995 by Cortes and 
296 Vapnik in 1995 [69]. SVM constitutes a collection of supervised ML models employing a kernel 
297 function for regression (SVR) and implementing nonlinear classification (SVC). It constructs an 
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298 optimal separating hyperplane that transforms a low-dimensional input vector into a higher-
299 dimensional feature space, utilizing the Vapnik-Chervonenkis Dimension theory to ensure robust 
300 generalization capabilities [69].

301

302 2.5.4 Random Forest (RF)

303 The RF concept is a fusion of classifier and repressor, enabling decision-making through a 
304 collection of tree-based decisions. RF functions by creating multiple Decision Trees (DTs) using 
305 randomly selected subsets of input features and training data. Each DT is trained on a separate 
306 subset of the data, and the ultimate prediction is obtained by combining the predictions from each 
307 individual DT [70]. By employing multiple DTs, RF mitigates overfitting and improves prediction 
308 accuracy by diminishing the impact of biased or inconsistent individual trees [71]. Additionally, 
309 RF can manage high-dimensional data and incomplete observations, thereby enhancing its 
310 adaptability for various applications [32,72].

311

312 2.5.5 Extreme Gradient Boosting (XGBoost)

313 The core principle behind XGBoost lies in utilizing a boosting algorithm, which combines 
314 multiple weak prediction models to generate more accurate overall predictions [73]. In the 
315 gradient boosting (GB) approach, successive iterations incorporate additional models into the 
316 ensemble, with each model focusing on instances inaccurately predicted by previous ones. 
317 Noteworthy for its versatility, XGBoost can handle various input data structures, such as sparse, 
318 missing, and categorical data [73]. XGBoost offers a range of hyperparameters that can be 
319 adjusted to improve its effectiveness for a given task, including the learning rate, maximum 
320 depth of each DT, number of trees in the ensemble, and regularization parameters [74]. 
321 Consequently, XGBoost has shown superior performance compared to other commonly used ML 
322 algorithms, such as RF and neural networks [33,74].

323

324 2.5.6 Boosted Regression Tree (BRT)

325 The BRT method, as introduced by Elith (2008)[75] is a powerful ensemble algorithm that 
326 combines two key techniques: boosting and regression trees. This approach harnesses the 
327 strengths of tree algorithms, allowing for the handling of diverse predictor variable types and 
328 accommodating missing values through surrogate splitting. The BRT leverages the advantages of 
329 boosting, a sequential process that enhances predictive performance by combining multiple trees. 
330 The core concept involves giving increased attention to observations poorly modeled by existing 
331 trees, specifically those with high deviations from the mean. This emphasis continues until the 
332 algorithm minimizes predictive deviance [76]. Notably, BRT addresses the limitations of 
333 standalone regression trees, effectively overcoming their suboptimal predictive performance 
334 through the boosting algorithm [77].
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335 BRT employs a forward, stage-wise process, maintaining existing trees unchanged while adding 
336 new trees in each iteration. The residuals of each observation are updated to account for the 
337 contribution of the newly added tree. Final predictions are determined by a weighted sum of each 
338 tree's predictions. This approach, detailed by previous studies [78–80], builds on Friedman's 
339 gradient boosting introduced in 2001 [81]. Friedman later [82] modified the procedure in 2002 by 
340 incorporating random subsampling of training data to improve prediction performance, reduce the 
341 risk of overfitting, and enhance computation efficiency [83].

342

343 2.5.7 Model evaluation indices

344 To assess the performance of the ML models employed in this study for modeling the IFT of the 
345 oil-brine and oil-brine-DEE systems in the laboratory condition, four commonly used statistical 
346 indices such as coefficient of determination (R2), root mean squared error (RMSE), mean squared 
347 error (MSE) and mean absolute error (MAE) were employed. The following indices were utilized 
348 to compare the predicted IFT values with the observed values [84–86]. R2 is a dimensionless value 
349 ranging from 0 to 1. When equals 1, it signifies that the data points are precisely aligned along a 
350 line with no dispersion. This indicates a model that fits the data perfectly. A lower RMSE, which 
351 measures the average magnitude of the differences between predicted and observed values, 
352 suggests a better fit, indicating smaller errors, but it is sensitive to outliers. MSE, representing the 
353 average squared differences, is also minimized for better model fit, though it is influenced by 
354 outliers due to the squaring operation. Both RMSE and MSE are on the same scale as the original 
355 data. On the other hand, MAE, which measures average absolute differences, is less sensitive to 
356 outliers and provides a direct interpretation in the original units.

𝑅2 =  1 ―
∑ (𝑦𝑒 ― 𝑦𝑝)2

∑ (𝑦𝑒 ― 𝑦𝑒)2
(2)

𝑅𝑆𝑀𝐸 =  
1
𝑛 +

𝑛

𝑖=1
(𝑦𝑖 ― 𝑦𝑖)2 (3)

𝑀𝑆𝐸 =  
∑ (𝑦𝑒 ― 𝑦𝑝)2

𝑁
(4)

𝑀𝐴𝐸 =
1
𝑛  

𝑛

𝑖=1
|𝑦𝑖 ― 𝑦𝑖| (5)
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357 where, 𝑦𝑒 and 𝑦𝑝 are the experimental and observed values. 𝑦𝑖 is also the mean of the experimental 
358 values and 𝑁 is the number of values. 

359

360 3. Results and discussion

361 3.1 Effect of the temperature and salinity on IFT of the oil-brine-DEE system 

362 In this study, we investigated the potential differences in the responses of two different systems, 
363 one with the presence of DEE and the other without, under varying temperature and salinity 
364 levels. Fig. 3 illustrates the variations in IFT (mN/m) through box plot representation across 
365 different salinity levels S1, S2, and S3 and temperatures T1, T2, and T3 for two systems: oil-brine 
366 and oil-brine-DEE. The box plot is the favored technique for visually examining a single 
367 parameter. It displays key statistics such as the minimum, first quartile (Q1), median, third 
368 quartile (Q3), maximum, and mean values of a parameter. The upper limit (maximum) and lower 
369 limit (minimum) are determined as [𝑄3 +  1.5 ∗  (𝑄3 ―  𝑄1)] and[𝑄1 ―  1.5 ∗  (𝑄3 ―  𝑄1)], 
370 respectively. Values exceeding or falling below these limits are classified as outliers. The robust 
371 Mann-Whitney U test was employed to assess the significance of differences between two 
372 systems, specifically tailored for non-normally distributed data. The null hypothesis (H0) 
373 assumed no difference in the groups' distributions, while the alternative hypothesis (H1) 
374 suggested a significant difference. We assessed significance using standard thresholds: p < 0.001 
375 (***) for extreme significance, 0.001 ≤ p < 0.01 (**) for very significance, 0.01 ≤ p < 0.05 (*) 
376 for significance, 0.05 ≤ p < 0.1 ('.') for marginal significance, and p ≥ 0.1 for no significance. The 
377 resulting p-values, all below 0.0001 (****), strongly support the rejection of the null hypothesis, 
378 indicating significant differences between the two systems at specific salinity levels and 
379 temperatures. Our findings consistently demonstrate that the use of DEE leads to a significant 
380 reduction in IFT when compared to the oil-brine system under various experimental conditions. 
381 The most notable contrast between the two systems occurred in S1 solution, where the average 
382 IFT difference exceeded 10 mN/m. Moreover, through box plot analysis, it is evident that the 
383 distribution of calculated IFT values around the mean and the frequency of outliers notably 
384 decreased with higher salinity levels. Specifically, the lowest distribution was observed in S3 
385 solution for both systems.

386 Figs. 4 and 5 offer a detailed examination of IFT variations in the oil-brine-DEE system under 
387 diverse temperature and salinity levels, providing enhanced insights into the impact of these 
388 parameters on IFT. In Fig. 4, it is evident that increasing temperature from T1 to T3 leads to a 
389 consistent decrease in IFT across all salinity concentrations for the groups. The IFT exhibits 
390 significant differences for all salinity levels. Notably, at an S1 solution, IFT varies between 5 mN/m 
391 to 10 mN/m, while for S2 and S3 solutions, the average IFT falls below 5 mN/m for all 
392 temperatures. Remarkably, the temperature of T3 also reduces the IFT deviation from the mean 
393 compared to T1 and T2. This is evident in the narrower boxplots and reduced occurrence of outliers, 
394 indicating a more concentrated distribution of IFT values around the median. Contrarily, the results 
395 at T1 and T3 exhibit more outliers and generally wider boxplots, signifying higher differences 
396 between quartiles. 

397 In general, the impact of temperature on IFT is contingent upon variables like the oil type, 
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398 aqueous solutions, and specific temperature and pressure conditions [87]. The observed reduction 
399 in IFT is likely a consequence of diminished intermolecular forces that bind molecules within the 
400 oil and brine. With elevated temperatures, these forces weaken, promoting increased molecular 
401 mobility and ultimately leading to a more pronounced reduction in IFT [88,89]. Another 
402 noteworthy consideration is that an increase in temperature reduces the number of hydrogen 
403 bonds formed among water molecules, thereby decreasing the energy required to create a unit 
404 area of free water. Consequently, this leads to a reduction in IFT. Furthermore, heightened 
405 temperatures enhance the miscibility of water and DEE, contributing to a further decrease in IFT 
406 [90]. It's important to highlight that at lower temperatures, the reduction in IFT is not as 
407 pronounced because the thermal motion of solvent molecules is considerably weaker [91].

408
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409 Fig. 3. Box plot representation of the IFT (mN/m) variations at salinity levels S1, S2, and S3 and 
410 temperatures T1, T2, and T3 for two systems: oil-brine and oil-brine-DEE

411

412 Fig. 5 delves into the influence of varying salinities on the IFT within the oil-brine-DEE system. 
413 According to the salinity results, a significant difference between groups is observed at all 
414 salinities. Notably, IFT experiences a pronounced and statistically significant decrease (P-value < 
415 0.0001) with the rise in brine from S1 to S3, reaching its lowest value, approximately 2 mN/m, at 
416 T3. A noteworthy observation is at S3 brine, where the boxplots for the three temperatures are 
417 narrower than other experimental conditions, indicating a more concentrated distribution of IFT 
418 values around the median with fewer outliers. In contrast, the widest boxplot with the highest 
419 deviation of IFT is observed at the lowest salinity.

420 Overall, regarding the impact of salinity on the IFT in the oil-brine-DEE system, our findings 
421 indicate that as the salinity level rises from S1 to S3, there is a corresponding decrease in IFT. The 
422 minimum IFT value was observed in S2 solution at T3, reaching approximately 2 mN/m. 
423 Subsequent increases in salinity from S2 to S3 did not result in a further reduction in IFT; instead, 
424 the IFT remained within the range of approximately 2 mN/m. This stabilization is likely attributed 
425 to salting-out effect. This pattern can be elucidated by the notion that an ideal salinity range 
426 promotes the migration of polar components such as asphaltene molecules to the interface of the 
427 oil-brine system, resulting in a subsequent decrease in IFT [92–96]. The salting-out mechanism in 
428 high-salinity water involves the increased likelihood of organic components migrating to the oil 
429 phase. This is due to the reduced solubility of polar organic components in the aqueous phase. On 
430 the other hand, the salting-in mechanism is characterized by the affinity of organic particles to 
431 dissolve in water [8,97,98]. In a pure water environment, strong structural arrangements among 
432 water molecules occur on one side of the aqueous phase interface, resulting in minimal disturbance 
433 to the interface [99–101]. A collaborative impact on reducing IFT occurs when both a solvent (DEE 
434 in the current study) and soluble ions are present in the solution. This implies that the adsorption 
435 of solvents at the water–oil interface forms a layer capable of adsorbing ions, thereby augmenting 
436 the layer. Consequently, the oil–solvent-ion layer becomes thicker compared to the oil-ion layer. 
437 With an elevation in salinity, the solubility of solvents in aqueous solutions diminishes, resulting 
438 in an increased transfer of solvent mass from the aqueous phase to the oil phase [102,103]. At 
439 elevated salinity levels, the activity coefficient of DEE rises, accompanied by a decrease in 
440 solubility in the aqueous phase, thereby intensifying the influence of DEE [104].

441 Fig. 6 supplements these findings by presenting the histogram of IFT in two systems including oil-
442 brine and oil-brine-DEE system, providing a comprehensive visualization of the distribution 
443 classes of the IFT under different salinity levels S1, S2, and S3 and temperatures T1, T2, and T3 for 
444 two systems. When the variance is too small or too large, a histogram is preferred to show the 
445 distribution of a numerical parameter. A histogram shows the numbers of values within an interval 
446 on vertical and variable on horizontal [105]. In the presented histograms, the IFT variable was 
447 explored across nine distinct graphs for two mentioned systems. These graphs were systematically 
448 organized based on three varying brine compositions, denoted as S1, S2, and S3, as well as three 
449 different temperatures labeled T1, T2, and T3. The vertical axis of each histogram signified the 
450 "count," representing the frequency or number of occurrences corresponding to specific IFT values 
451 on the horizontal axis. 
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452 It is important to highlight that in this study, we examined the impact of DEE on IFT under varying 
453 conditions of salinity and temperature. However, the influence of pressure was not evaluated 
454 during the IFT measurements in the presence of DEE. Furthermore, it is recommended that future 
455 research investigate the effectiveness of DEE in altering rock wettability, as this could potentially 
456 lead to tangible improvements in oil recovery.

457

458

459 Fig. 4. Box plot representation of the IFT (mN/m) variations of the oil-brine-DEE system at different 
460 temperatures T1, T2, and T3

461
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462

463 Fig. 5. Box plot representation of the IFT (mN/m) variations of the oil-brine-DEE system at different 
464 salinity levels S1, S2, and S3

465

466

467
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468

469 Fig. 6. Histogram depicting the IFT of oil-brine-DEE at salinity levels S1, S2, and S3 and temperatures T1, 
470 T2, and T3

471

472 3.2 IFT modeling using advanced ML algorithms

473 In Table 3, the presentation of statistical parameters obtained from each model is showcased. 
474 Before executing the models, we partitioned the complete dataset into a 70 % training set and a 30 
475 % testing set. Interestingly, R2, RMSE, MSE, and MAE indicated that the models generalize well 
476 from the training to the testing set, with minimal performance degradation. This suggests that the 
477 models not only fit the training data effectively but also maintain their accuracy when applied to 
478 test data. Such consistency across training and testing sets is crucial for ensuring the reliability of 
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479 the models in real-world scenarios. All methods demonstrate satisfactory performance, evident 
480 from the high R2 (>0.71) presented in Table 3. The outcomes, showcased in Figs. 7 and 8, illustrate 
481 the estimation results generated by the unified model for both the training and testing sets of the 
482 two systems. A visual assessment of the data unveils a noticeable disparity in the model fitting 
483 between the two systems. Specifically, in the presence of DEE (Fig. 7), the data points demonstrate 
484 a more closely aligned pattern with the model, indicating a superior fit to the training set compared 
485 to the base system. This is particularly evident in the reduced dispersion of points, suggesting a 
486 more precise depiction of the underlying patterns in the data.

487 Moreover, a specific observation can be made concerning the RF, BRT, and XGBoost algorithms. 
488 In the training dataset, the points associated with these algorithms closely approximate the 45-
489 degree line, which is the ideal line, R2 is increasing, and the relative error is decreasing, suggesting 
490 a high level of accuracy and consistency in their predictions (Figs. 7 and 8). Furthermore, the 
491 results consistently exhibit less scattered points in the testing set across all algorithms, indicating 
492 the robust generalization performance of the models beyond the training data. To put it more 
493 simply, it is clear that there is variability in the performance among the developed models. In 
494 accordance with Table 3, the results of the oil-brine-DEE system revealed that RF, BRT, and 
495 XGBoost consistently outperformed other models, attaining remarkable R2 values of 0.99 and 
496 highlighting minimal RMSE, MSE, and MAE, emphasizing their robust generalization 
497 capabilities. SVM also demonstrated robust predictive capabilities with a high R2 of 0.94. While 
498 GLM and GAM exhibited commendable performance, the ensemble methods stood out with 
499 superior accuracy (Table 3). The models exhibiting the least favorable performance were GLM 
500 and GAM, producing R2 values of 0.72 and 0.9, along with RMSE values of 1.23 and 0.73, 
501 respectively. This observation is reinforced by the considerable spread of data points from the unit 
502 slope line in Figs. 7 and 8. 

503 Regarding oil-brine system, RF, XGBoost, and BRT stood out prominently again for modeling of 
504 IFT with perfect R2 values of 1.00 in both the training and testing sets, highlighting their 
505 exceptional ability to explain the variance in the data. These top-performing models consistently 
506 demonstrated lower values across all metrics, including RMSE, MSE, and MAE, indicative of 
507 minimized errors in their predictions. Specifically, RF displayed the smallest RMSE (0.24) and 
508 MSE (0.06) in the testing set, closely followed by XGBoost and BRT. While GAM achieved 
509 impressive results, the ensemble methods displayed superior overall performance. The comparison 
510 between training and testing sets indicates the robust generalization of RF, XGBoost, and BRT, 
511 maintaining consistently low error metrics in both scenarios.  

512

513 Table 3. Comparative statistical results across developed models

oil-brine-DEE system

Models
R2

Test

RMSE

Test

MSE 

Test

MAE 

Test

R2

Training

RMSE

Training

MSE

Training

MAE

Training
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GLM 0.72 1.23 1.51 0.98 0.71 1.25 1.56 0.99

GAM 0.90 0.73 0.53 0.58 0.89 0.76 0.57 0.60

RF 0.99 0.20 0.04 0.13 0.99 0.19 0.04 0.12

SVM 0.94 0.61 0.37 0.42 0.93 0.64 0.40 0.42

XGBoost 0.99 0.31 0.10 0.19 0.99 0.32 0.10 0.19

BRT 0.99 0.20 0.04 0.15 0.99 0.19 0.04 0.14

oil-brine system

Models
R2

Test

RMSE

Test

MSE 

Test

MAE 

Test

R2

Training

RMSE

Training

MSE

Training

MAE

Training

GLM 0.77 1.97 3.88 1.75 0.78 1.94 3.78 1.73

GAM 0.98 0.58 0.34 0.42 0.98 0.56 0.31 0.40

RF 1.00 0.24 0.06 0.17 1.00 0.23 0.05 0.16

SVM 0.97 0.68 0.46 0.53 0.98 0.67 0.44 0.53

XGBoost 1.00 0.32 0.10 0.25 1.00 0.31 0.10 0.25

BRT 1.00 0.28 0.08 0.21 1.00 0.27 0.07 0.20

514

515

516
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517

518

519 Fig. 7. Comparison of the predicted and observed plots for the IFT of the oil-brine-DEE system using 
520 advanced ML models (GAM, GLM, SVM, RF, XGBoost, and BRT)
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521

522 Fig. 8. Comparison of the predicted and observed plots for the IFT of the oil-brine system using advanced 
523 ML models (GAM, GLM, SVM, RF, XGBoost, and BRT)

524 3.3 Validity of proposed models
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525 Emphasizing the significance of the fact that oil and water are commonly found as the primary 
526 fluids in reservoirs, most ML models have been created to forecast IFT across different systems. 
527 However, this marks the initial application of advanced ML in the oil-brine-DEE system, and all 
528 examined models yielded impressive outcomes. Notably, the RF method outperforms alternative 
529 approaches, boasting the highest overall R2 (0.99), as evidenced in Table 3 and illustrated in Fig. 
530 7. In terms of accuracy metrics, the RF model excels with the lowest RMSE (0.2), MSE (0.04), 
531 and MAE (0.13). Likewise, the BRT and XGBoost models demonstrate performance on par with 
532 the RF system. The BRT model achieves an overall R2 of 0.99, accompanied by corresponding 
533 RMSE, MSE, and MAE values of 0.2, 0.04, and 0.15, respectively. In general, RF stands out as a 
534 widely utilized ensemble learning algorithm renowned for its effectiveness in addressing a 
535 multitude of classification and regression challenges [106,107]. This algorithm operates by 
536 amalgamating predictions from multiple decision trees, resulting in accurate and stable forecasts 
537 [108,109]. Noteworthy advantages distinguish RF from other ML algorithms, including its high 
538 accuracy and resilience to data noise and outliers [110]. Moreover, RF boasts ease of 
539 implementation, and its performance can be enhanced through hyperparameter tuning, such as 
540 adjusting the number of decision trees and the number of features selected at each split [111,112]. 
541 Furthermore, the XGBoost model secures the third position, delivering a similarly noteworthy 
542 overall R2 of 0.99. The outstanding performance of the XGBoost can be attributed to its inherent 
543 technical advantages, which effectively address model variances and mitigate the risk of 
544 overfitting [113,114].

545 The study provides valuable insights into the optimization of salinity levels and the synergistic 
546 effects of DEE and soluble ions on IFT reduction. These insights could contribute to the 
547 enhanced design and performance of EOR projects. However, there may be a risk of overreliance 
548 on ML techniques without sufficient consideration of the underlying physical mechanisms 
549 governing IFT behavior in complex oil-brine-solvent systems. This oversight could limit the 
550 generalizability and interpretability of the models.

551

552 4. Summary and Conclusions

553 This research explored the application of ML algorithms to predict oil-brine-DEE IFT reliably 
554 when complex experimental data is unavailable. A comprehensive dataset comprising 7017 
555 entries for the oil-brine system and 6949 entries for the oil-brine-DEE system was assembled to 
556 develop the ML models. Six intelligent models, namely GLM, GAM, SVM, RF, XGBoost, and 
557 BRT, were developed to forecast IFT considering temperature and salinity variables at constant 
558 pressure. Various statistical metrics such as R2, RMSE, MSE, and MAE were employed to 
559 identify the most robust and reliable model. Additionally, a graphical analysis was conducted to 
560 assess the accuracy of the models. The major findings of the study are as follows:

561 • With increasing salinity and temperature, there was a decrease in IFT. However, this 
562 study emphasizes the optimal salinity range for achieving the most substantial reduction 
563 in IFT. This is attributed to the facilitation of the migration of polar components, such as 
564 asphaltene molecules, to the interface of the oil-brine system. A synergistic reduction in 
565 IFT is observed when both DEE and soluble ions are present in the solution, leading to 
566 the lowest IFT at approximately 2 mN/m in the S2 solution at T3. This suggests that the 
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567 adsorption of DEE at the water–oil interface forms a layer capable of adsorbing ions, 
568 thereby enhancing the layer. Consequently, the oil–solvent-ion layer becomes thicker 
569 compared to the oil-ion layer, resulting in the maximum decrease in IFT.
570 • The RF model proved to be the most accurate in estimating the IFT for both the oil-brine 
571 and oil-brine-DEE systems, displaying the highest R2 (1, 0.99) and the lowest RMSE 
572 (0.24, 0.2), MSE (0.06, 0.02), and MAE (0.17, 0.13) compared to the other models 
573 suggested. Conversely, two robust intelligent models, namely BRT and XGBoost, also 
574 produced reliable predictions for IFT outcomes.
575 • The GLM technique displayed the least satisfactory performance, as evidenced by the 
576 lowest observed R2 values of (0.72, 0.77) in the two systems, oil-brine and oil-brine-
577 DEE.
578 • A key benefit of this method is the swift application of ML in the field. Once a ML 
579 model is trained and demonstrates effectiveness on unseen data, it serves as a rapid tool 
580 for predicting the optimal EOR method for a given reservoir. Additionally, this approach 
581 ensures that screening results remain unbiased, devoid of any influence from expert 
582 knowledge or opinions.
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603

Nomenclature

AI Artificial Intelligence BRT Boosted Regression Tree

DEE Diethyl Ether DEW DME-Enhanced Waterflooding

DME Dimethyl Ether EOR Enhance Oil Recovery

GAM Gradient Additive Model GLM Generalized Linear Model

IFT Interfacial Tension (mN/m) MAE Mean Absolute Error (mN/m)

ML Machine Learning MSE Mean Squared Error (mN/m)2

R2 Coefficient of Determination RF Random Forest

RMSE Root Mean Squared Error (mN/m) S1 4000 ppm Solution

S2 40,000 ppm Solution S3 80,000 ppm Solution

SVM Support Vector Machine T1 Temperature of 30°C

T2 Temperature of 50°C T3 Temperature of 70°C

XGBoost Extreme Gradient Boosting
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944

945 Research Highlights 

946 • The impact of diethyl ether on the interfacial tension (IFT) of crude oil-brine was 
947 examined under varying salinity and temperature conditions.
948 • An experimental database comprising 7,017 sets of crude oil/brine/DEE IFT data was 
949 acquired.
950 • Six advanced machine-learning models were developed to accurately estimate the IFT of 
951 Crude oil–Brine-DEE.
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952 • Statistical analysis was conducted, demonstrating outstanding predictions for a wide 
953 range of input variables.
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